JavaGuide自学记录5-JVM


JVM

内存区域详解

JDK1.7线程共享区域有个方法区,JDK8变为了本地内存里的元空间。

字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。

在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。

栈由一个个栈帧组成,而每个栈帧中都拥有:局部变量表、操作数栈、动态链接、方法返回地址。

内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存

从 JDK 1.7 开始已经默认开启逃逸分析,如果某些方法中的对象引用没有被返回或者未被外面使用(也就是未逃逸出去),那么对象可以直接在栈上分配内存

Java 堆还可以细分为:新生代和老年代;再细致一点新生代有:Eden、S0、S1 等空间

JDK 8 版本之后 PermGen(永久代) 已被 Metaspace(元空间) 取代,元空间使用的是本地内存。

新生代->老年代->永久代

永久代和元空间是 HotSpot 虚拟机对虚拟机规范中方法区的两种实现方式。

元空间的一些可设置参数

-XX:MetaspaceSize=N //设置 Metaspace 的初始(和最小大小)
-XX:MaxMetaspaceSize=N //设置 Metaspace 的最大大小

Java对象的创建过程:1.类加载检查 2.分配内存 3.初始化零值 4.设置对象头 5.执行init方法

JVM垃圾回收详解

Java 自动内存管理最核心的功能是 内存中对象的分配与回收。

对象优先在Eden区分配,当 Eden 区没有足够空间进行分配时,虚拟机将发起一次 Minor GC。

  1. 在这次垃圾回收过程中,存活的对象会被复制到Survivor区(通常是S0或S1),而不存活的对象则会被清除。
  2. 如果Survivor区的空间不足,则存活的对象会被直接晋升到老年代。
  3. 在下一次minor GC过程中,会将Eden区和上次的Survivor区(例如S0)中的存活对象复制到另一个Survivor区(例如S1)。同时,上一轮minor GC中存活下来的对象年龄会增加1,并一起复制到新的Survivor区。

大对象就是需要大量连续内存空间的对象,直接进入老年代。

针对 HotSpot VM 的实现,它里面的 GC 其实准确分类只有两大种:

部分收集 (Partial GC):

  • 新生代收集(Minor GC / Young GC):只对新生代进行垃圾收集;
  • 老年代收集(Major GC / Old GC):只对老年代进行垃圾收集。需要注意的是 Major GC 在有的语境中也用于指代整堆收集;
  • 混合收集(Mixed GC):对整个新生代和部分老年代进行垃圾收集。

整堆收集 (Full GC):收集整个 Java 堆和方法区。

空间分配担保:进行Minor GC之前,先看看老年代有没有足够的空间。如果没有,则进行Full GC

如果一个对象只具有软引用,那就类似于可有可无的生活用品。如果内存空间足够,垃圾回收器就不会回收它,如果内存空间不足了,就会回收这些对象的内存,使用软引用的情况较多,比如高速敏感的缓存,这是因为软引用可以加速 JVM 对垃圾内存的回收速度,可以维护系统的运行安全,防止内存溢出(OutOfMemory)等问题的产生.

无用的类:

  1. 该类所有的实例都已经被回收,也就是 Java 堆中不存在该类的任何实例。

  2. 加载该类的 ClassLoader 已经被回收。

  3. 该类对应的 java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

垃圾收集算法:标记-清除算法。复制算法。标记-整理算法。分代收集算法。

分代收集算法:比如在新生代中,每次收集都会有大量对象死去,所以可以选择”标记-复制“算法,只需要付出少量对象的复制成本就可以完成每次垃圾收集。而老年代的对象存活几率是比较高的,而且没有额外的空间对它进行分配担保,所以我们必须选择“标记-清除”或“标记-整理”算法进行垃圾收集。

JDK默认的垃圾收集器:

  • JDK 8:Parallel Scavenge(新生代)+ Parallel Old(老年代),即Parallel GC
  • JDK 9 ~ JDK20: G1

垃圾回收器

Serial收集器:串行,单线程,在进行垃圾收集工作的时候必须暂停其他所有的工作线程( “Stop The World” ),直到它收集结束。新生代采用标记-复制算法,老年代采用标记-整理算法。

ParNew 收集器:其实就是 Serial 收集器的多线程版本,除了使用多线程进行垃圾收集外,其余行为(控制参数、收集算法、回收策略等等)和 Serial 收集器完全一样。

Parallel Scavenge 收集器:和ParNew收集器基本一样。Parallel Scavenge 收集器关注点是吞吐量(高效率的利用 CPU)。CMS 等垃圾收集器的关注点更多的是用户线程的停顿时间(提高用户体验)。

JDK8默认的垃圾收集器:新生代用Parallel Scavenge收集器,老年代用Serial Old 收集器

探究ParNew与Parallel Scavenge的区别:

ParNew收集器(新生代)通常与CMS收集器(老年代)配合使用,它们共同为低延迟场景提供服务。

ParNew注重的是降低暂停时间,因此更适合需要低延迟的应用,如Web服务器、交互式应用等。而Parallel Scavenge注重高吞吐量,更适合后台运算为主的场景,如大型计算任务、批处理等。

ParNew为了保证低延迟,可能会牺牲部分吞吐量。而Parallel Scavenge则相反,它会牺牲部分延迟来保证最大的吞吐量。

Parallel Scavenge具有自适应调节策略(-XX:+UseAdaptiveSizePolicy),能够根据系统的实际运行情况调整各个区域的大小及目标暂停时间。ParNew没有这种自适应机制。

Serial Old 收集器:单线程,Serial收集器的老年代版本,与Parallel Scavenge配合使用。

Parallel Old 收集器:多线程,Parallel Scavenge收集器的老年代版本

CMS收集器:CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。它非常符合在注重用户体验的应用上使用

CMS(Concurrent Mark Sweep)收集器是 HotSpot 虚拟机第一款真正意义上的并发收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。

CMS 收集器是一种 “标记-清除”算法实现的。

整个过程分为四个步骤:

  • 初始标记: 暂停所有的其他线程,并记录下直接与 root 相连的对象,速度很快 ;
  • 并发标记: 同时开启 GC 和用户线程,用一个闭包结构去记录可达对象。但在这个阶段结束,这个闭包结构并不能保证包含当前所有的可达对象。因为用户线程可能会不断的更新引用域,所以 GC 线程无法保证可达性分析的实时性。所以这个算法里会跟踪记录这些发生引用更新的地方。
  • 重新标记: 重新标记阶段就是为了修正并发标记期间因为用户程序继续运行而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段的时间稍长,远远比并发标记阶段时间短
  • 并发清除: 开启用户线程,同时 GC 线程开始对未标记的区域做清扫。

主要优点:并发收集、低停顿。但是它有下面三个明显的缺点:

  • 对 CPU 资源敏感;
  • 无法处理浮动垃圾;
  • 它使用的回收算法-“标记-清除”算法会导致收集结束时会有大量空间碎片产生

G1收集器

G1 (Garbage-First) 是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足 GC 停顿时间要求的同时,还具备高吞吐量性能特征.

它具备以下特点:

  • 并行与并发:G1 能充分利用 CPU、多核环境下的硬件优势,使用多个 CPU(CPU 或者 CPU 核心)来缩短 Stop-The-World 停顿时间。部分其他收集器原本需要停顿 Java 线程执行的 GC 动作,G1 收集器仍然可以通过并发的方式让 java 程序继续执行。
  • 分代收集:虽然 G1 可以不需要其他收集器配合就能独立管理整个 GC 堆,但是还是保留了分代的概念。
  • 空间整合:与 CMS 的“标记-清除”算法不同,G1 从整体来看是基于“标记-整理”算法实现的收集器;从局部上来看是基于“标记-复制”算法实现的。
  • 可预测的停顿:这是 G1 相对于 CMS 的另一个大优势,降低停顿时间是 G1 和 CMS 共同的关注点,但 G1 除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为 M 毫秒的时间片段内,消耗在垃圾收集上的时间不得超过 N 毫秒。

G1 收集器的运作大致分为以下几个步骤:

  • 初始标记
  • 并发标记
  • 最终标记
  • 筛选回收

G1 收集器在后台维护了一个优先列表,每次根据允许的收集时间,优先选择回收价值最大的 Region(这也就是它的名字 Garbage-First 的由来) 。这种使用 Region 划分内存空间以及有优先级的区域回收方式,保证了 G1 收集器在有限时间内可以尽可能高的收集效率(把内存化整为零)。

从 JDK9 开始,G1 垃圾收集器成为了默认的垃圾收集器

CMS新生代的Young GC、G1和ZGC都基于标记-复制算法,但算法具体实现的不同就导致了巨大的性能差异。

G1停顿时间的瓶颈主要是标记-复制中的转移阶段STW。为什么转移阶段不能和标记阶段一样并发执行呢?主要是G1未能解决转移过程中准确定位对象地址的问题。

ZGC收集器

与 CMS 中的 ParNew 和 G1 类似,ZGC 也采用标记-复制算法,不过 ZGC 对该算法做了重大改进。

在 ZGC 中出现 Stop The World 的情况会更少!

它的设计目标包括:

  • 停顿时间不超过10ms;
  • 停顿时间不会随着堆的大小,或者活跃对象的大小而增加;
  • 支持8MB~4TB级别的堆(未来支持16TB)。

与CMS中的ParNew和G1类似,ZGC也采用标记-复制算法,不过ZGC对该算法做了重大改进:ZGC在标记、转移和重定位阶段几乎都是并发的,这是ZGC实现停顿时间小于10ms目标的最关键原因。

ZGC只有三个STW阶段:初始标记再标记初始转移。其中,初始标记和初始转移分别都只需要扫描所有GC Roots,其处理时间和GC Roots的数量成正比,一般情况耗时非常短;再标记阶段STW时间很短,最多1ms,超过1ms则再次进入并发标记阶段。即,ZGC几乎所有暂停都只依赖于GC Roots集合大小,停顿时间不会随着堆的大小或者活跃对象的大小而增加。与ZGC对比,G1的转移阶段完全STW的,且停顿时间随存活对象的大小增加而增加。

ZGC关键技术

ZGC通过着色指针读屏障技术,解决了转移过程中准确访问对象的问题,实现了并发转移。大致原理描述如下:并发转移中“并发”意味着GC线程在转移对象的过程中,应用线程也在不停地访问对象。假设对象发生转移,但对象地址未及时更新,那么应用线程可能访问到旧地址,从而造成错误。而在ZGC中,应用线程访问对象将触发“读屏障”,如果发现对象被移动了,那么“读屏障”会把读出来的指针更新到对象的新地址上,这样应用线程始终访问的都是对象的新地址。那么,JVM是如何判断对象被移动过呢?就是利用对象引用的地址,即着色指针。

类加载器详解

  • 类加载过程:加载->连接->初始化
  • 连接过程又可分为三步:验证->准备->解析

类加载器的主要作用就是加载 Java 类的字节码( .class 文件)到 JVM 中(在内存中生成一个代表该类的 Class 对象)。

Java中内置了三个重要的ClassLoader

**BootstrapClassLoader(启动类加载器)**:最顶层的加载类,由 C++实现,通常表示为 null,并且没有父级,主要用来加载 JDK 内部的核心类库( %JAVA_HOME%/lib目录下的 rt.jarresources.jarcharsets.jar等 jar 包和类)以及被 -Xbootclasspath参数指定的路径下的所有类。

**ExtensionClassLoader(扩展类加载器)**:主要负责加载 %JRE_HOME%/lib/ext 目录下的 jar 包和类以及被 java.ext.dirs 系统变量所指定的路径下的所有类。

**AppClassLoader(应用程序类加载器)**:面向我们用户的加载器,负责加载当前应用 classpath 下的所有 jar 包和类。

除了这三种类加载器之外,用户还可以加入自定义的类加载器来进行拓展,以满足自己的特殊需求。就比如说,我们可以对 Java 类的字节码( .class 文件)进行加密,加载时再利用自定义的类加载器对其解密。

自定义类加载器:

classLoader中有两个关键的方法。

如果我们不想打破双亲委派模型,就重写 ClassLoader 类中的 findClass() 方法即可,无法被父类加载器加载的类最终会通过这个方法被加载。但是,如果想打破双亲委派模型则需要重写 loadClass() 方法。

双亲委派模型:当一个类需要被加载的时候,一步步往上问看是否已经被加载;都没有加载的话再从上到下一步步尝试去加载。

JVM 不仅要看类的全名是否相同,还要看加载此类的类加载器是否一样。只有两者都相同的情况,才认为两个类是相同的。

双亲委派模型保证了 Java 程序的稳定运行,可以避免类的重复加载(JVM 区分不同类的方式不仅仅根据类名,相同的类文件被不同的类加载器加载产生的是两个不同的类),也保证了 Java 的核心 API 不被篡改。

最重要的JVM参数总结

堆内存

堆内存区域的唯一目的就是存放对象实例,几乎所有的对象实例以及数组都在这里分配内存

显式指定堆内存最小值和最大值–Xms-Xmx

在堆总可用内存配置完成之后,第二大影响因素是为 Young Generation 在堆内存所占的比例。

新生代分配 最小和最大 -XX:NewSize=256m -XX:MaxNewSize=1024m

如果我们要为 新生代分配 256m 的内存(NewSize 与 MaxNewSize 设为一致)-Xmn256m

JDK7的方法区(永久代)参数

-XX:PermSize=N #方法区 (永久代) 初始大小
-XX:MaxPermSize=N #方法区 (永久代) 最大大小

JDK8使用元空间取代永久代,元空间是使用本地内存。

-XX:MetaspaceSize=N #设置 Metaspace 的初始大小(是一个常见的误区,后面会解释)
-XX:MaxMetaspaceSize=N #设置 Metaspace 的最大大小

Metaspace 的初始容量并不是 -XX:MetaspaceSize 设置,无论 -XX:MetaspaceSize 配置什么值,对于 64 位 JVM 来说,Metaspace 的初始容量都是 21807104(约 20.8m)

Metaspace 由于使用不断扩容到-XX:MetaspaceSize参数指定的量,就会发生 FGC,且之后每次 Metaspace 扩容都会发生 Full GC。

也就是说,MetaspaceSize 表示 Metaspace 使用过程中触发 Full GC 的阈值,只对触发起作用。

垃圾回收器

选择合适的垃圾回收器:

JVM 具有四种类型的 GC 实现:

  • 串行垃圾收集器
  • 并行垃圾收集器
  • CMS 垃圾收集器
  • G1 垃圾收集器

可以使用以下参数声明这些实现:
-XX:+UseSerialGC
-XX:+UseParallelGC
-XX:+UseParNewGC
-XX:+UseG1GC

GC日志记录:生产环境上,或者其他要测试 GC 问题的环境上,一定会配置上打印 GC 日志的参数,便于分析 GC 相关的问题。

# 必选
# 打印基本 GC 信息
-XX:+PrintGCDetails
-XX:+PrintGCDateStamps
# 打印对象分布
-XX:+PrintTenuringDistribution
# 打印堆数据
-XX:+PrintHeapAtGC
# 打印Reference处理信息
# 强引用/弱引用/软引用/虚引用/finalize 相关的方法
-XX:+PrintReferenceGC
# 打印STW时间
-XX:+PrintGCApplicationStoppedTime

# 可选
# 打印safepoint信息,进入 STW 阶段之前,需要要找到一个合适的 safepoint
-XX:+PrintSafepointStatistics
-XX:PrintSafepointStatisticsCount=1

# GC日志输出的文件路径
-Xloggc:/path/to/gc-%t.log
# 开启日志文件分割
-XX:+UseGCLogFileRotation
# 最多分割几个文件,超过之后从头文件开始写
-XX:NumberOfGCLogFiles=14
# 每个文件上限大小,超过就触发分割
-XX:GCLogFileSize=50M

我们还有很多JVM参数可以去调:

https://javaguide.cn/java/jvm/jvm-parameters-intro.html#%E6%96%87%E7%AB%A0%E6%8E%A8%E8%8D%90

JDK监控和故障处理工具总结

jps:查看所有 Java 进程

jstat: 监视虚拟机各种运行状态信息

比如 jstat -gc -h3 31736 1000 10表示分析进程 id 为 31736 的 gc 情况,每隔 1000ms 打印一次记录,打印 10 次停止,每 3 行后打印指标头部。

jinfo: 实时地查看和调整虚拟机各项参数

使用 jinfo 可以在不重启虚拟机的情况下,可以动态的修改 jvm 的参数。尤其在线上的环境特别有用

jmap(Memory Map for Java)命令用于生成堆转储快照

jmap 的作用并不仅仅是为了获取 dump 文件,它还可以查询 finalizer 执行队列、Java 堆和永久代的详细信息,如空间使用率、当前使用的是哪种收集器等。和jinfo一样,jmap有不少功能在 Windows 平台下也是受限制的。

jhat 用于分析 heapdump 文件,它会建立一个 HTTP/HTML 服务器,让用户可以在浏览器上查看分析结果。

jstack(Stack Trace for Java)命令用于生成虚拟机当前时刻的线程快照。线程快照就是当前虚拟机内每一条线程正在执行的方法堆栈的集合.

生成线程快照的目的主要是定位线程长时间出现停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等都是导致线程长时间停顿的原因。线程出现停顿的时候通过jstack来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做些什么事情,或者在等待些什么资源。

JDK可视化分析工具:
JConsole:Java 监视与管理控制台;可以查看Java程序概况,内存监控,线程监控,

Visual VM:多合一故障处理工具;

VisualVM 基于 NetBeans 平台开发,因此他一开始就具备了插件扩展功能的特性,通过插件扩展支持,VisualVM 可以做到:

  • 显示虚拟机进程以及进程的配置、环境信息(jps、jinfo)。
  • 监视应用程序的 CPU、GC、堆、方法区以及线程的信息(jstat、jstack)。
  • dump 以及分析堆转储快照(jmap、jhat)。
  • 方法级的程序运行性能分析,找到被调用最多、运行时间最长的方法。
  • 离线程序快照:收集程序的运行时配置、线程 dump、内存 dump 等信息建立一个快照,可以将快照发送开发者处进行 Bug 反馈。
  • 其他 plugins 的无限的可能性……

JVM线上问题排查和性能调优案例

https://javaguide.cn/java/jvm/jvm-in-action.html


文章作者: 爱敲代码の鱼儿
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 爱敲代码の鱼儿 !
  目录