Redis高级篇-黑马


Redis高级篇-黑马

分布式缓存

当然分片集群也内置了哨兵(各个master节点)来进行故障恢复

持久化

RDB全称Redis Database Backup file(Redis数据备份文件),简单来说就是把内存中的所有数据都记录到磁盘中。快照文件称为RDB文件,默认是保存在当前运行目录。

RDB持久化在四种情况下会执行:

  • 执行save命令
  • 执行bgsave命令
  • Redis停机时
  • 触发RDB条件时

save命令,主进程执行RDB,这个过程中其它所有命令都会被阻塞。只有在数据迁移时可能用到。

bgsave命令,执行后会开启独立进程完成RDB,主进程可以持续处理用户请求,不受影响。

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
当主进程执行读操作时,访问共享内存;
当主进程执行写操作时,则会拷贝一份数据,执行写操作。

Redis停机时会执行一次save命令,实现RDB持久化。

Redis内部有触发RDB的机制,可以在redis.conf文件中找到。比如,900秒内,如果至少有1个key被修改,则执行bgsave。

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。

AOF的刷盘,同步刷盘太耗费性能,交给操作系统则可靠性差,则推荐everysec每秒刷盘

通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果

主从

假设有A、B两个Redis实例,如何让B作为A的slave节点?
在B节点执行命令:slaveof A的IP A的port

第一次是全量同步,1.1请求数据同步

master判断一个节点是否是第一次同步的依据,就是看replid是否一致

之后几次一般都是增量同步,除非差距过大

repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步

全量同步时的repl_baklog文件,这个文件是一个固定大小的数组,只不过数组是环形,也就是说角标到达数组末尾后,会再次从0开始读写,这样数组头部的数据就会被覆盖。

主从优化:可以从以下几个方面来优化Redis主从就集群:

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

主从从架构图:

哨兵(Sentinel)

哨兵的作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

一个sentinel判断是主观下线,过半sentinel判断则构成客观下线

故障恢复:

  1. 首先选定一个slave作为新的master,执行slaveof no one
  2. 然后让所有节点都执行slaveof 新master
  3. 修改故障节点,执行slaveof 新master

配置读写分离:

Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

然后在配置文件application.yml中指定redis的sentinel相关信息:

spring:
  redis:
    sentinel:
      master: mymaster
      nodes:
        - 192.168.150.101:27001
        - 192.168.150.101:27002
        - 192.168.150.101:27003

配置读写分离

在项目的启动类中,添加一个新的bean:

@Bean
public LettuceClientConfigurationBuilderCustomizer clientConfigurationBuilderCustomizer(){
    return clientConfigurationBuilder -> clientConfigurationBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}

这个bean中配置的就是读写策略,包括四种:

  • MASTER:从主节点读取
  • MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
  • REPLICA:从slave(replica)节点读取
  • REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master

分片集群

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题

  • 高并发写的问题

使用分片集群可以解决上述问题,如图:

分片集群特征:

  • 集群中有多个master,每个master保存不同数据
  • 每个master都可以有多个slave节点
  • master之间通过ping监测彼此健康状态
  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

插槽:存储数据是存在插槽上,0~16383共16384个插槽(hash slot)上,然后根据master数量再进行分区域。

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:

  • key中包含”{}”,且“{}”中至少包含1个字符,“{}”中的部分是有效部分
  • key中不包含“{}”,整个key都是有效部分

例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

如何将同一类数据固定的保存在同一个Redis实例?

  • 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

集群可以进行伸缩,要执行一些redis cluster指令,还要分配插槽。

RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:

多级缓存

在tomcat那的进程缓存,可以使用Caffeine

在Nginx中也是写lua,可以使用OpenResty(OpenResty® 是一个基于 Nginx的高性能 Web 平台)

数据同步-canal

Canal就是把自己伪装成MySQL的一个slave节点,从而监听master的binary log变化。再把得到的变化信息通知给Canal的客户端,进而完成对其它数据库的同步。

Canal是基于mysql的主从同步来实现的,MySQL主从同步的原理如下:

  • 1)MySQL master 将数据变更写入二进制日志( binary log),其中记录的数据叫做binary log events
  • 2)MySQL slave 将 master 的 binary log events拷贝到它的中继日志(relay log)
  • 3)MySQL slave 重放 relay log 中事件,将数据变更反映它自己的数据

引入依赖:

<dependency>
    <groupId>top.javatool</groupId>
    <artifactId>canal-spring-boot-starter</artifactId>
    <version>1.2.1-RELEASE</version>
</dependency>

编写配置:

canal:
  destination: heima # canal的集群名字,要与安装canal时设置的名称一致
  server: 192.168.150.101:11111 # canal服务地址

修改Item实体类

通过@Id、@Column、等注解完成Item与数据库表字段的映射:

package com.heima.item.pojo;

import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import org.springframework.data.annotation.Id;
import org.springframework.data.annotation.Transient;

import javax.persistence.Column;
import java.util.Date;

@Data
@TableName("tb_item")
public class Item {
    @TableId(type = IdType.AUTO)
    @Id
    private Long id;//商品id
    @Column(name = "name")
    private String name;//商品名称
    private String title;//商品标题
    private Long price;//价格(分)
    private String image;//商品图片
    private String category;//分类名称
    private String brand;//品牌名称
    private String spec;//规格
    private Integer status;//商品状态 1-正常,2-下架
    private Date createTime;//创建时间
    private Date updateTime;//更新时间
    @TableField(exist = false)
    @Transient
    private Integer stock;
    @TableField(exist = false)
    @Transient
    private Integer sold;
}

@Transient:

可以将该字段不持久化至数据库表中

@TableField(exist = false):

可以让Mybatis-plus忽略该字段,不将其作为SQL语句中的字段。

编写监听器

通过实现EntryHandler<T>接口编写监听器,监听Canal消息。注意两点:

  • 实现类通过@CanalTable("tb_item")指定监听的表信息
  • EntryHandler的泛型是与表对应的实体类
package com.heima.item.canal;

import com.github.benmanes.caffeine.cache.Cache;
import com.heima.item.config.RedisHandler;
import com.heima.item.pojo.Item;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Component;
import top.javatool.canal.client.annotation.CanalTable;
import top.javatool.canal.client.handler.EntryHandler;
//指定要监听的表
@CanalTable("tb_item")
@Component
//Item是指定的被监听的实体类
public class ItemHandler implements EntryHandler<Item> {

    @Autowired
    private RedisHandler redisHandler;
    @Autowired
    private Cache<Long, Item> itemCache;

    @Override
    public void insert(Item item) {
        // 写数据到JVM进程缓存
        itemCache.put(item.getId(), item);
        // 写数据到redis
        redisHandler.saveItem(item);
    }

    @Override
    public void update(Item before, Item after) {
        // 写数据到JVM进程缓存
        itemCache.put(after.getId(), after);
        // 写数据到redis
        redisHandler.saveItem(after);
    }

    @Override
    public void delete(Item item) {
        // 删除数据到JVM进程缓存
        itemCache.invalidate(item.getId());
        // 删除数据到redis
        redisHandler.deleteItemById(item.getId());
    }
}

在这里对Redis的操作都封装到了RedisHandler这个对象中,是我们之前做缓存预热时编写的一个类,内容如下:

package com.heima.item.config;

import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.heima.item.pojo.Item;
import com.heima.item.pojo.ItemStock;
import com.heima.item.service.IItemService;
import com.heima.item.service.IItemStockService;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;

import java.util.List;

@Component
public class RedisHandler implements InitializingBean {

    @Autowired
    private StringRedisTemplate redisTemplate;

    @Autowired
    private IItemService itemService;
    @Autowired
    private IItemStockService stockService;

    private static final ObjectMapper MAPPER = new ObjectMapper();

    @Override
    public void afterPropertiesSet() throws Exception {
        // 初始化缓存
        // 1.查询商品信息
        List<Item> itemList = itemService.list();
        // 2.放入缓存
        for (Item item : itemList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(item);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        }

        // 3.查询商品库存信息
        List<ItemStock> stockList = stockService.list();
        // 4.放入缓存
        for (ItemStock stock : stockList) {
            // 2.1.item序列化为JSON
            String json = MAPPER.writeValueAsString(stock);
            // 2.2.存入redis
            redisTemplate.opsForValue().set("item:stock:id:" + stock.getId(), json);
        }
    }

    public void saveItem(Item item) {
        try {
            String json = MAPPER.writeValueAsString(item);
            redisTemplate.opsForValue().set("item:id:" + item.getId(), json);
        } catch (JsonProcessingException e) {
            throw new RuntimeException(e);
        }
    }

    public void deleteItemById(Long id) {
        redisTemplate.delete("item:id:" + id);
    }
}

Redis最佳实践

BigKey

Redis的Key虽然可以自定义,但最好遵循下面的几个最佳实践约定:

  • 遵循基本格式:[业务名称]:[数据名]:[id]
  • 长度不超过44字节
  • 不包含特殊字符

例如:我们的登录业务,保存用户信息,其key可以设计成如下格式:

local : user :10

这样设计的好处:

  • 可读性强
  • 避免key冲突
  • 方便管理
  • 更节省内存: key是string类型,底层编码包含int、embstr和raw三种。embstr在小于44字节使用,采用连续内存空间,内存占用更小。当字节数大于44字节时,会转为raw模式存储,在raw模式下,内存空间不是连续的,而是采用一个指针指向了另外一段内存空间,在这段空间里存储SDS内容,这样空间不连续,访问的时候性能也就会收到影响,还有可能产生内存碎片

BigKey通常以Key的大小和Key中成员的数量来综合判定,例如:

  • Key本身的数据量过大:一个String类型的Key,它的值为5 MB
  • Key中的成员数过多:一个ZSET类型的Key,它的成员数量为10,000个
  • Key中成员的数据量过大:一个Hash类型的Key,它的成员数量虽然只有1,000个但这些成员的Value(值)总大小为100 MB

那么如何判断元素的大小呢?redis也给我们提供了命令

memory usage name 不过这种太耗费CPU了

所以我们用长度或列表大小来估算 strlen name llen list2

推荐值:

  • 单个key的value小于10KB
  • 对于集合类型的key,建议元素数量小于1000

BigKey的危害

  • 网络阻塞
    • 对BigKey执行读请求时,少量的QPS就可能导致带宽使用率被占满,导致Redis实例,乃至所在物理机变慢
  • 数据倾斜
    • BigKey所在的Redis实例内存使用率远超其他实例,无法使数据分片的内存资源达到均衡
  • Redis阻塞
    • 对元素较多的hash、list、zset等做运算会耗时较旧,使主线程被阻塞
  • CPU压力
    • 对BigKey的数据序列化和反序列化会导致CPU的使用率飙升,影响Redis实例和本机其它应用

如何发现BigKey

①redis-cli –bigkeys

利用redis-cli提供的–bigkeys参数,可以遍历分析所有key,并返回Key的整体统计信息与每个数据的Top1的big key

命令:redis-cli -a 密码 --bigkeys

②scan扫描

自己编程,利用scan扫描Redis中的所有key,利用strlen、hlen等命令判断key的长度(此处不建议使用MEMORY USAGE)

③第三方工具
④网络监控
  • 自定义工具,监控进出Redis的网络数据,超出预警值时主动告警
  • 一般阿里云搭建的云服务器就有相关监控页面

如何删除BigKey

BigKey内存占用较多,即便时删除这样的key也需要耗费很长时间,导致Redis主线程阻塞,引发一系列问题。

redis 3.0 及以下版本

  • 如果是集合类型,则遍历BigKey的元素,先逐个删除子元素,最后删除BigKey

Redis 4.0以后

  • Redis在4.0后提供了异步删除的命令:unlink

恰当的数据类型

例1:比如存储一个User对象,我们有三种存储方式:

①方式一:json字符串
user:1 {“name”: “Jack”, “age”: 21}

优点:实现简单粗暴

缺点:数据耦合,不够灵活

②方式二:字段打散
user:1:name Jack
user:1:age 21

优点:可以灵活访问对象任意字段

缺点:占用空间大、没办法做统一控制

③方式三:hash(推荐)
user:1 name jack
age 21

优点:底层使用ziplist,空间占用小,可以灵活访问对象的任意字段

缺点:代码相对复杂

例2:假如有hash类型的key,其中有100万对field和value,field是自增id,这个key存在什么问题?如何优化?

key field value
someKey id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • hash的entry数量超过500时,会使用哈希表而不是ZipList,内存占用较多
    • 62.23M
  • 可以通过hash-max-ziplist-entries配置entry上限。但是如果entry过多就会导致BigKey问题
方案一–77.54M

拆分为string类型

key value
id:0 value0
..... .....
id:999999 value999999

存在的问题:

  • string结构底层没有太多内存优化,内存占用较多

  • 想要批量获取这些数据比较麻烦

方案二-24.46M

拆分为小的hash,将 id / 100 作为key, 将id % 100 作为field,这样每100个元素为一个Hash

key field value
key:0 id:00 value0
..... .....
id:99 value99
key:1 id:00 value100
..... .....
id:99 value199
....
key:9999 id:00 value999900
..... .....
id:99 value999999
### 批处理优化

Redis提供了一些原生的批处理指令,不过每条指令只能处理特定的数据结构,例如mset,hmset

如果有对复杂数据类型的批处理需要,建议使用Pipeline

@Test
void testPipeline() {
    // 创建管道
    Pipeline pipeline = jedis.pipelined();
    long b = System.currentTimeMillis();
    for (int i = 1; i <= 100000; i++) {
        // 放入命令到管道
        pipeline.set("test:key_" + i, "value_" + i);
        if (i % 1000 == 0) {
            // 每放入1000条命令,批量执行
            pipeline.sync();
        }
    }
    long e = System.currentTimeMillis();
    System.out.println("time: " + (e - b));
}

针对于集群下的批处理

Spring集群环境下批处理代码,实现的是性能最好的并行slot

   @Test
    void testMSetInCluster() {
        Map<String, String> map = new HashMap<>(3);
        map.put("name", "Rose");
        map.put("age", "21");
        map.put("sex", "Female");
        stringRedisTemplate.opsForValue().multiSet(map);


        List<String> strings = stringRedisTemplate.opsForValue().multiGet(Arrays.asList("name", "age", "sex"));
        strings.forEach(System.out::println);

    }

Redis的持久化配置

Redis的持久化虽然可以保证数据安全,但也会带来很多额外的开销,因此持久化请遵循下列建议:

  • 用来做缓存的Redis实例尽量不要开启持久化功能
  • 建议关闭RDB持久化功能,使用AOF持久化
  • 利用脚本定期在slave节点做RDB,实现数据备份
  • 设置合理的rewrite阈值,避免频繁的bgrewrite
  • 配置no-appendfsync-on-rewrite = yes,禁止在rewrite期间做aof,避免因AOF引起的阻塞
  • 部署有关建议:
    • Redis实例的物理机要预留足够内存,应对fork和rewrite
    • 单个Redis实例内存上限不要太大,例如4G或8G。可以加快fork的速度、减少主从同步、数据迁移压力
    • 不要与CPU密集型应用部署在一起
    • 不要与高硬盘负载应用一起部署。例如:数据库、消息队列

Redis的慢查询

慢查询的阈值可以通过配置指定:

slowlog-log-slower-than:慢查询阈值,单位是微秒。默认是10000,建议1000

慢查询会被放入慢查询日志中,日志的长度有上限,可以通过配置指定:

slowlog-max-len:慢查询日志(本质是一个队列)的长度。默认是128,建议1000

知道了以上内容之后,那么咱们如何去查看慢查询日志列表呢:

  • slowlog len:查询慢查询日志长度
  • slowlog get [n]:读取n条慢查询日志
  • slowlog reset:清空慢查询列表

一些安全问题

  • Redis一定要设置密码
  • 禁止线上使用下面命令:keys、flushall、flushdb、config set等命令。可以利用rename-command禁用。
  • bind:限制网卡,禁止外网网卡访问
  • 开启防火墙
  • 不要使用Root账户启动Redis
  • 尽量不是有默认的端口

一些内存问题,还有集群主从


文章作者: 爱敲代码の鱼儿
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 爱敲代码の鱼儿 !
  目录